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ABSTRACT - Prediction of BMD and Young's modulus of bones can highly enhance the scope for early detection and mitigation of untimely 
bone fracture and delay the associated difficulties that set in due to osteoporosis as one ages. It is demonstrated that microstructure and 
mechanical properties of bone can be derived from texture analysis of Computational Tomography (CT) images, using Gray Level Co-
occurrence Matrix (GLCM) method. In the present work the authors attempted to establish a relationship between all the identified fourteen 
GLCM derived second order texture properties and bone mechanical properties. The fourteen textural features were acquired through GLCM 
matrix derived from QCT images of rabbit femur bone taken for the study. Method of Phantom calibration is implemented for computing bone 
mineral density (BMD). Bone mechanical properties like young’s modulus and flexural rigidity are calculated from three-point bending test. 
The “Coefficient of Determination R2” values for the correlation between each texture feature and the bone properties, such as Elastic 
Modulus, BMD and flexural modulus were computed. Out of the fourteen GLCM derived second order texture properties studied, energy, 
entropy, homogeneity, correlation and contrast showed significant relation with bone mechanical properties. Moreover, energy and entropy 
showed strong correlation with R square value greater than 0.6. The results show that the bone mechanical properties namely, BMD and 
young modulus can be predicted from second order textural features that are extracted from clinical image taken for any other diagnostic 
purpose. This can help clinicians for the early detection of osteoporosis, which aids in the prevention of medical emergencies arising from 
osteoporosis and can reduce the modulus mismatch during implantation which will result in best patient outcomes.  
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1 INTRODUCTION  

Bones play a vital role in keeping our body healthy. Bones 
undergo changes continuously; wherein new bone tissues 
are made and the old ones are broken down. According to 
Wolff’s law, the mechanical properties might vary as bone is 
constantly remodelling and adapting to external load [1][2]. 
In adult the bone formation rate is higher than degeneration. 
As aging progress the bone formation rate decreases as 
compared to deformation rate[3]. Bone loss in aging due to 
high rate of bone deformation result in osteoporosis, if early 
detected and treated reduces the osteoporotic fracture. 
Osteoporotic fracture is the major concern for health care of 
elderly population. 

Osteoporosis is a progressive, systemic, skeletal disorder 
which is characterized by low bone mass and deterioration 
of bone tissue in micro-architectural level, leads to increased 
bone fragility and  fracture risk[4].The peak bone mass at 
young adulthood depends largely on genetic, biological and 
lifestyle factors, since low bone strength during the growing 
years is evidently associated with increased fragility fracture 
risk during old age[5].84% of osteoporotic fracture cases are 
due to ignorance of worsening of bone mass[6]. Detection of 
diminished quality of bone is critical in the prevention of 
osteoporotic fracture and helps in starting timely bone 
modulating therapies. Bone Mineral Density (BMD) plays a 
major role in evaluating the osteoporotic condition of a 
patient. Adults who are subjected to implantation leads to 
early osteoporotic condition due to modulus mismatch 
between host bone and implants. The implant fixation, 

accelerates bone degradation and failure due to stress 
shielding. The post-surgical problem like non-union or 
pseudarthrosis (possibly the result of stress shielding) and 
strut subsidence (possibly the result of a stiffer strut placed 
against a less stiff recipient bone) are due to modulus 
mismatches between host bone and implants[7]. Moreover, 
the moduli mismatch leads to excessive micro-motion 
between implants and bone, which inhibits bone formation 
and promotes fibrous tissue ingrowth, thereby preventing 
the osseointegration of the implant. Hence knowing the bone 
stiffness during implantation is necessary to reduce the large 
margin of stiffness between host bone and implant.  

In vivo assessment of BMD and Bone stiffness (young’s 
modulus) helps   to minimise the   fracture risk of 
osteoporotic condition. Many researchers have 
demonstrated that microstructure and mechanical 
properties of bone can be derived from texture analysis of 
Computational Tomography (CT) images, using Gray Level 
Co-occurrence Matrix (GLCM)method. Studies evaluated 
that the first and second order texture propertied are used 
for the classification of images[8].This method has been 
applied to various field like geoscience and remote sensing 
fields such as SAR sea ice, desert , cloud and soil [7][8][9] 
[10]. Haralick showed that the popular way of extracting 
second order texture features of the image is from the Gray 
level co-occurrence matrix (GLCM), which is a matrix with 
number of rows and columns is equal to the number of gray 
levels, G, in the image[11].  
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It is reported that, fourteen textural features can be 
measured from the probability matrix(GLCM) to extract the 
texture characteristics of medical images[11].Studies 

reported that some GLCM texture properties like energy, 
contrast, entropy, autocorrelation, correlation, inverse 
difference moment, Cluster Shade have been evaluated from 
2D projection image of bone  and correlated with its BMD, 
Young’s modulus and Bone volume fraction[7]. It is also 
reported that the GLCM feature ‘correlation’, outperformed 
energy, contrast, entropy, homogeneity and other GLCM 
features with a root-mean-square error metric used for 
predicting the trabecular BMD[8]. None of these studies 
compared the correlation performance of all fourteen GLCM 
parameters with the mechanical properties of bone.  

In the present study, authors attempted to correlate all 
textural properties defined by Haralick[12] with the 
mechanical properties of bone which is obtained from 
mechanical testing of rabbit femur bone.  

2 MATERIALS AND METHODS 

Figure-1shows the flow chart of the present work for 
correlating second order image properties derived from 
QCT scan and the mechanical properties from three-point 
bending test of rabbit bone. The work consists of three 
stages. First, QCT image acquisition using GE optima QCT 
scanner having a calibration phantom- Catphan is 
performed. Secondly, the GLCM matrix from DICOM 
images are used for deriving second order texture properties 
defined by Haralick [12]. Finally, mechanical properties are 
calculated from a three-point bending test conducted on 
rabbit femur bone and bone mineral density is computed 
from QCT image of the same specimen. Following sections 
discusses the stepwise procedure of sample preparation and 
data acquisition from experiments conducted on rabbit 
femur bone.  

Femur bone specimens of adult rabbit weighing 
approximately 1.75 - 2.5 kg are used for this study. Published 
methods for storage and handling of bone specimens were 
strictly followed during this investigation[13]. The 
specimens were kept at -200C in saline solution until tested.  

 

Figure [1] Methodology flow chart 

 

 

 Figure [2] The rabbit femur bone specimen sample 
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They are thawed and kept moist with saline soaked sponge 
at room temperature, while preparing for Quantitative CT 
and experimentation. Ethics approval was obtained from the 
University ethics committee IAEC 1-KU-14/2019-20-TKM-
PND (1). The specimen samples are shown in Figure [2] 
Mechanical test was conducted on table top UTM, INSTRON 
3345, with Software BLUE HILL-3 at Sree Chitra Thirunal 
Institute for Medical Sciences and Technology, Trivandrum, 
An Institution of national importance under the Department 

of Science and Technology, Govt. of India. Each specimen 
was placed on the jig as shown in Figure [3] and gauge 
length was set to 30 mm. Knife-edge indenter of 4 mm in tip 
radius was used within the three-point bending test. Elastic 
bending test was carried out at a crosshead speed of 5 
mm/min at 240C. Elastic modulus for each specimen was 
calculated using equation (1).  

 

𝐸 =
𝐹

∆
(

𝐿3

48𝐼
) ………………………. (1) 

 

     Where E=young’s Modulus,
𝐹

∆
 =Slope of load -

displacement graph, I= Moment of inertia, L=Gauge length 
(30mm). Flexural Strength of bone specimen was recorded 
during three-point bending test. 

Bone Mineral Density of rabbit femur bone specimen was 
computed from the selected region of interest of CT image 
using calibration phantom. Figure-4 shows the sample 
DICOM/CT image of rabbit bone. Fifteen Rabbit femur bone 
specimens were prepared as per the procedure reported[14]  
and was subjected to QCT scanning (120kV-347mA, 0.625 
mm slice thickness). A dedicated calibration phantom was 
placed in the scanner mat beneath the specimen. The QCT 
images obtained are analysed for identifying bone tissues or 
Region of interest (ROI) by calculating tissue distribution 
from the mean grey value or Hounsfield (HU) value. This is 
done by using a ROI tool in the software Sante-DICOM 
viewer. The selected region of interest of an image is saved 
as a jpeg image 

Pixel attenuations (Hounsfield units or HU) on selected 
region of interest of CT images were converted to BMD 
values using a reference Catphan calibration phantom. The 
measured HU of the phantom and their corresponding 
equivalent densities are used to estimate slope and intercept 
parameters in equation (2), i.e., ‘a’ and ‘b’ of a linear model 
for converting HU values to BMD within a specified ROI. 
The HU values of these reference phantom rod and their 
known densities are used to construct a linear model, i.e. 

 

Figure [3] Rabbit femur bone in three-point bending test setup 

 

 

Figure [4] Sample of ROI selected on DICOM image 
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ρ = a + b HU…………… (2) 
where, a=1.56 and b=0.00043 
The second order texture features give information about 

the relative positions of the various gray levels within the 
image. The occurrence of some gray-level configuration can 
be described by a matrix of relative frequencies  Pθ, d (L1, L2). 
It describes how frequently two pixels with gray-levels L1, 
L2 appear in the window separated by a distance d in 

direction θ. The information can be extracted from the co-
occurrence matrix that measures second-order image 
statistics [15]. The co-occurrence matrix is a function of two 
parameters: relative distance measured in pixel numbers (d) 
and their relative orientation θ. The orientation θ is 
quantized in four directions that represent horizontal, 
diagonal, vertical and anti-diagonal by 0˚, 45˚, 90˚ and 135˚ 
respectively. Textural features which are derived from the 
co-occurrence matrix proposed by Haralick[12]  are Angular 
Second Moment (ASM), Contrast, Correlation, Sum of 
Squares or Variance, Inverse Difference Moment, Sum 
Average, Sum Variance, Sum Entropy, Entropy, Difference 

Variance, Difference Entropy, Information Measure of 
Correlations and Cluster Tendency. The mathematical 
equations for computing the property values are listed in 

table appended (Appendix-A). 
The Haralick defined [12] second order texture 

parameters which quantify the spatial relationship between 
pixels in the area under investigation (ROI). The GLCM 
values with orientations 00, 450 and 900 for a displacement of 

one unit for the selected ROI unit were extracted from the 
QCT images of rabbit bone specimens. The texture 
parameters are computed from average GLCM values using 
MATLAB code.  

3 RESULTS AND DISCUSSIONS 

In the present study, fifteen rabbit femur bone specimens 
were used for experimentation and imaging. The properties 
such as Elastic Modulus, Flexural Modulus and ultimate 
strength were obtained from three-point bending tests. The 
Bone mineral density was extracted from QCT images of the 
bone specimen using calibration phantom. The GLCM 

TABLE II  

YOUNGS MODULUS OF RABBIT FEMUR BONE SAMPLES 

 

Bone 

Sample 

Young's 

Modulus 

(E)(GPa) 

Bone 

Sample 

Young's 

Modulus 

(E)(GPa) 

Bone Sample 

Young's 

Modulus 

(E)(GPa) 

1 2.40592 6 2.80716 11 1.99 

2 2.63935 7 2.46376 12 2.23769 

3 2.40849 8 2.684 13 2.3394 

4 2.68061 9 1.76337 14 2.03775 

5 1.94991 10 2.19208 15 2.42935 

 

TABLE I 

BONE MINERAL DENSITY OF RABBIT FEMUR BONE SAMPLES 

 

Bone 

Sample 

Bone Mineral 

Density (g/cm3) 

(BMD) 

Bone 

Sample 

Bone Mineral 

Density (g/cm3) 

(BMD) 

Bone Sample 

Bone Mineral 

Density (g/cm3) 

(BMD) 

1 1.675 6 1.947 11 1.891 

2 1.795 7 1.809 12 1.876 

3 1.751 8 1.917 13 1.76 

4 1.701 9 1.801 14 1.873 

5 1.734 10 1.783 15 1.876 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 6, June-2021                                                                                                 1380 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

 

values with orientations 00, 450 and 900 for a displacement of one unit were extracted from the QCT images of bone 

 

Figure [5] sample graphs showing correlation between Bone Mineral Density (BMD) of rabbit femur bone and second order texture properties 
computed from QCT image of the specimen. 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 12, Issue 6, June-2021                                                                                                 1381 
ISSN 2229-5518  
 

IJSER © 2021 

http://www.ijser.org 

 

specimens. The relationship of mechanical properties of bone such as Elastic Modulus, Flexural Modulus and Bone 

 

Figure [6] sample graphs showing correlation between Young’s Modulus of rabbit femur bone and second order texture properties computed from 
QCT image of the specimen. 
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mineral density with the texture features computed from averaged GLCM, were determined statistically. The 

 

Figure [7] sample graphs showing correlation between Flexural Strength of rabbit femur bone and second order texture properties computed from 
QCT image of the specimen 
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“Coefficient of Determination R2” values for the correlation 
between each texture feature and the bone properties, such 
as Elastic Modulus, Bone mineral density and flexural 
modulus were computed. 

 The BMD computed from QCT image using Calibration 
Phantom material is shown in table [1] Young’s modulus 
was calculated from a load-displacement graph obtained 
during the three-point bending test on rabbit femur bone. 
The table [2] shows the computed value of Youngs Modulus 

The multiple linear regression analysis conducted in this 
work revealed that out of the bone properties correlation of 
Elastic Modulus, Flexural Modulus, and Bone mineral 
density are in good agreement with the feature parameters 
extracted from GLCM.      BMD shows a significant 
correlation with the five GLCM feature parameters such as 
entropy (r2 =0.605) energy (r2 =0.6842), correlation (r2 
=0.3107), homogeneity (r2 =0.5329) contrast (r2 =0.3479). It is 
noted that the Elastic modulus of bone showed correlation 
with texture properties such as entropy (r2=0.5956), energy 
(r2=0.753), homogeneity (r2=0.563), contrast (r2=0.4667) and 
correlation (r2=0.38). The GLCM feature parameters like 
correlation, entropy, energy, dissimilarity, autocorrelation, 
sum average, sum variance shows R square values such as 
0.4545,0.344,0.344,0.305,0.2591,0.28,0.26 respectively with 
Flexural Strength. The Figures [5][6][7] show the sample 
correlation graph of the above-mentioned properties with 
bone mechanical properties (Bone Mineral Density, Young's 
Modulus, Flexural Strength). Based on Multi-regression 
analysis for Haralick defined fourteen textural features with 
mechanical data of rabbit femur bone samples, it can be seen 
that texture properties such as entropy, energy, 
homogeneity, contrast and correlation show significant R 
square value with bone features. Among them energy and 
entropy show the best correlation with bone features. Hence, 

it can be concluded that, the above GLCM features 
parameter can be used as input parameters for predicting 
bone mineral density, flexural Modulus and Elastic modulus 
of bone. 

4 CONCLUSIONS 

In the present work the authors attempted to establish a 
relationship between GLCM derived second order texture 
properties and bone mechanical properties. The results 
presented in this work concluded that statistically correlated 
texture features such as entropy, energy, homogeneity, 
contrast and correlation computed from Gray Level Co-
occurrence Matrices derived from bone images, shows 
significant correlation with bone mineral density and 
Young’s Modulus. The GLCM feature parameters like 
correlation, entropy, energy, dissimilarity, autocorrelation, 
sum average, sum variance shows moderate correlation with 
flexural strength. Among the five significant properties 
energy and entropy show strong correlation with R square 
value greater than 0.6 with BMD and Young's Modulus. 
Hence the bone mineral density and young modulus values 
can be predicted by using the second order texture features 
extracted from clinical image taken for any diagnostic 
purposes. 

 Bone mineral density prediction from second order image 
properties using GLCM parameters helps clinicians for the 
early detection of osteoporosis, which aids in the prevention 
of medical emergencies arising from osteoporosis. The 
young’s modulus prediction from texture features reduces 
the modulus mismatch during implantation and results in 
best patient outcomes. 

 

 

Appendix A 

 

Textural Features Expression Notation Definition 

Autocorrelation 
∑ ∑(𝑖, 𝑗)𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
X(i,j) Elements i,j in the GLCM 

Cluster prominence 
∑ ∑(𝑖 + 𝑗 − 2µ)3

𝑁

𝐽=1

𝑁

𝑖=1

 𝑝(𝑖, 𝑗) 
N Number of gray-levels 

Cluster Shade 
∑ ∑(𝑖 + 𝑗 − 2µ)4𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
P(i,j) 𝑥(𝑖, 𝑗)

∑ ∑ 𝑥(𝑖, 𝑗)𝑁
𝑗=1

𝑁
𝑖=1

 

Contrast 
∑ ∑(𝑖 − 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

𝑝(𝑖, 𝑗) 
px  (i) 

∑ 𝑝(𝑖, 𝑗)

𝑁

𝐽=1

 

Correlation 
∑ ∑ (

𝑖 − µ𝑥 

𝜎𝑥

𝑁

𝑗=1

𝑁

𝑖=1
)(

𝑗 − µ𝑦  

𝜎𝑦
) 𝑝(𝑖, 𝑗) 

Py (j) 
∑ 𝑝(𝑖, 𝑗)

𝑁

𝑖=1

 

Difference Entropy 
− ∑ 𝑃𝑥−𝑦(𝑘)𝑙𝑜𝑔𝑃𝑥−𝑦  

𝑁−1

𝑘=0

(𝑘) 
µ𝑥   

∑ 𝑖. 𝑝𝑥  (i)

𝑁

𝑖=1
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Appendix A 

Textural Features Expression Notation Definition 

Autocorrelation 
∑ ∑(𝑖, 𝑗)𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
X(i,j) Elements i,j in the GLCM 

Cluster prominence 
∑ ∑(𝑖 + 𝑗 − 2µ)3

𝑁

𝐽=1

𝑁

𝑖=1

 𝑝(𝑖, 𝑗) 
N Number of gray-levels 

Cluster Shade 
∑ ∑(𝑖 + 𝑗 − 2µ)4𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
P(i,j) 𝑥(𝑖, 𝑗)

∑ ∑ 𝑥(𝑖, 𝑗)𝑁
𝑗=1

𝑁
𝑖=1

 

Contrast 
∑ ∑(𝑖 − 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

𝑝(𝑖, 𝑗) 
px  (i) 

∑ 𝑝(𝑖, 𝑗)

𝑁

𝐽=1

 

Correlation 
∑ ∑ (

𝑖 − µ𝑥 

𝜎𝑥

𝑁

𝑗=1

𝑁

𝑖=1
)(

𝑗 − µ𝑦  

𝜎𝑦
) 𝑝(𝑖, 𝑗) 

Py (j) 
∑ 𝑝(𝑖, 𝑗)

𝑁

𝑖=1

 

Difference Entropy 
− ∑ 𝑃𝑥−𝑦(𝑘)𝑙𝑜𝑔𝑃𝑥−𝑦  

𝑁−1

𝑘=0

(𝑘) 
µ𝑥   

∑ 𝑖. 𝑝𝑥  (i)

𝑁

𝑖=1

 

Difference Variance 
∑(𝑘 − 𝜇𝑥−𝑦)

2   
𝑃𝑥−𝑦(𝑘)

𝑁−1

𝑘=0

 
µ𝑦   

∑ 𝑗. 𝑝𝑦

𝑁

𝑗=1

(𝑗) 

Dissimilarity 
∑ ∑|𝑖 − 𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

. 𝑃(𝑖, 𝑗) 
𝜎𝑥

2 
∑(𝑖 − µ𝑥)2 . 𝑝𝑥(𝑖)

𝑁

𝑖=1

 

Energy 
∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 
𝜎𝑦 

2  
∑(𝑖 − µ𝑦)

2
.

𝑁

𝑗=1

𝑝𝑥(𝑗) 

Entropy 
− ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
𝑝𝑥+𝑦(𝑘) 

∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

i+j=k 

Homogeneity 
∑ ∑

𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2

𝑁

𝑗=1

𝑁

𝑖=1

 
𝑃𝑥−𝑦(𝑘) 

∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 

|𝑖 − 𝑗| = 𝑘 

Information measure 

of correlation 1 

𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max (𝐻𝑋, 𝐻𝑌)
 

µ𝑥+𝑦   
∑ 𝑘. 𝑝𝑥+𝑦(𝑘)

2𝑁

𝑘=2

 

Information measure 

of correlation 2 

 

√1 − exp [−2(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)] µ𝑥−𝑦   
∑ 𝑘. 𝑝𝑥−𝑦(𝑘)

𝑁−1

𝑘=0

 

Inverse difference 
∑ ∑

𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁

𝑗=1

𝑁

𝑖=1

 
𝐻𝑋 

− ∑ 𝑝𝑥

𝑁

𝑖=1

(𝑖). 𝑙𝑜𝑔  𝑝𝑥(𝑖) 

Maximum Probability 𝑚𝑎𝑥𝑖,𝑗   𝑝(𝑖, 𝑗) 

 

𝐻𝑌 
− ∑ 𝑝𝑦

𝑁

𝑖=1

(𝑖). 𝑙𝑜𝑔  𝑝𝑦(𝑖) 

Sum average 
∑ 𝑘𝑝𝑥+𝑦(𝑘)

2𝑁

𝑘=2

 
𝐻𝑋𝑌 

− ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

. log 𝑝(𝑖, 𝑗) 

 

Sum entropy 

 − ∑ 𝑝𝑥+𝑦 (𝑘)𝑙𝑜𝑔𝑝𝑥+𝑦(𝑘)

2𝑁

𝑘=2

 
𝐻𝑋𝑌1 

− ∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

. log[𝑝𝑥(𝑖). 𝑝𝑦(𝑗)] 

Sum of square 
∑ ∑(𝑖 − µ)2𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

 
𝐻𝑋𝑌2 

− ∑ ∑ 𝑝𝑥(𝑖). 𝑝𝑦

𝑁

𝑗=1

𝑁

𝑖=1

(𝑗). 𝑙𝑜𝑔[𝑝𝑥(𝑖). 𝑝𝑦(𝑗)] 

Sum variance 
∑(𝑘 − µ𝑥+𝑦)2  𝑝𝑥+𝑦(𝑘)

2𝑁

𝑘=2

 
(𝑄(𝑖, 𝑗) 

∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁

𝑘=1
 

Maximal Correlation 

Coefficient 
√𝜆2(𝑄(𝑖, 𝑗))   
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